Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.6 Polar Area (CO6)
Learning Outcomes
Subsection 7.6.1 Activities
Activity 7.6.1 .
Consider the regions bounded by polar coordinates \(0\leq r \leq r_0\) and \(0\leq \theta \leq \theta_0\) for various values of \(r_0, \theta_0\text{.}\)
(a)
Sketch the region bound by polar coordinates \(0\leq r \leq 1\) and \(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(b)
Sketch the region bound by polar coordinates \(0\leq r \leq 2\) and \(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(c)
Sketch the region bound by polar coordinates \(0\leq r \leq 5\) and \(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(d)
Sketch the region bound by polar coordinates \(0\leq r \leq 1\) and \(0\leq \theta \leq \dfrac{\pi}{4}\text{.}\) What is the area of this region?
(e)
Sketch the region bound by polar coordinates \(0\leq r \leq 5\) and \(0\leq \theta \leq \dfrac{\pi}{4}\text{.}\) What is the area of this region?
Activity 7.6.2 .
What in general is the area of the region bound by polar coordinates \(0\leq r \leq r_0\) and \(0\leq \theta \leq \theta_0\text{?}\)
\(\displaystyle \displaystyle \pi \frac{r_0^2}{\theta_0}\)
\(\displaystyle \displaystyle \frac{r_0^2}{\pi \theta_0}\)
\(\displaystyle \displaystyle \theta_0 \frac{r_0^2}{\pi}\)
\(\displaystyle \displaystyle \theta\frac{r_0^2}{2}\)
Figure 179. Finding the polar area differential
Activity 7.6.3 .
Consider the “fan-shaped” region between the pole and
\(r=f(\theta)\) as the angle
\(\theta\) ranges from
\(\alpha\) to
\(\beta\) as depicted in
Figure 179 .
(a)
Which of the following best describes a Riemann sum which approximates the area of this region?
\(\displaystyle \displaystyle \sum_{k=1}^n f(\theta_k)\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n f(\theta_k)^2\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n \frac{f(\theta_k)^2}{2}\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n \pi f(\theta_k)^2\Delta \theta\)
(b)
Which of the following describes an integral which computes the area of this region?
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} f(\theta)d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta}f(\theta)^2 d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} \frac{f(\theta)^2}{2}d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} \pi f(\theta)^2 d\theta\)
Fact 7.6.4 .
The area of the “fan-shaped” region between the pole and \(r=f(\theta)\) as the angle \(\theta\) ranges from \(\alpha\) to \(\beta\) is given by
\begin{equation*}
\int_{\theta=\alpha}^{\theta=\beta} \frac{r^2}{2}d\theta\text{.}
\end{equation*}
Activity 7.6.5 .
(a)
Find an integral computing the area of the region defined by \(0\leq r\leq-\cos(\theta)+5\) and \(\pi/2\leq \theta\leq 3\pi/4\text{.}\)
(b)
Find the area enclosed by the cardioid \(r=2(1+\cos(\theta)\text{.}\)
(c)
Find the area enclosed by one loop of the 4-petaled rose \(r=\cos(2\theta)\text{.}\)
Subsection 7.6.2 Videos
Figure 180. Video for CO6
Subsection 7.6.3 Exercises