Activity 8.4.1. Recall from Section 8.3 that for any real numbers a,r and Sn=∑i=0nari that:🔗 Sn=∑i=0nari=a+ar+ar2+⋯arn(1−r)Sn=(1−r)∑i=0nari=(1−r)(a+ar+ar2+⋯arn)(1−r)Sn=(1−r)∑i=0nari=a−arn+1Sn=a1−rn+11−r. 🔗 (a) Using Definition 8.3.12, for which values of r does ∑n=0∞arn converges?🔗 .|r|>1. .|r|=1. .|r|<1. The series converges for every value of .r. 🔗🔗(b) Where possible, determine what value ∑n=0∞arn converges to.🔗🔗🔗
(a) Using Definition 8.3.12, for which values of r does ∑n=0∞arn converges?🔗 .|r|>1. .|r|=1. .|r|<1. The series converges for every value of .r. 🔗🔗
Fact 8.4.2. Geometric series are sums of the form🔗 ,∑n=0∞arn=a+ar+ar2+ar3+…, where a and r are real numbers. When |r|<1 this series converges to the value .a1−r. Otherwise, the geometric series diverges.🔗 🔗🔗
Activity 8.4.3. Consider the infinite series🔗 5+32+34+38+⋯. 🔗 (a) Complete the following rearrangement of terms.🔗 5+32+34+38+⋯=?+(3+32+34+38+⋯)=?+∑n=0∞?⋅(1?)n 🔗🔗(b) Since ,|1?|<1, this series converges. Use the formula ∑n=0∞arn=a1−r to find the value of this series.🔗 72 132 8 10 🔗🔗
(b) Since ,|1?|<1, this series converges. Use the formula ∑n=0∞arn=a1−r to find the value of this series.🔗 72 132 8 10 🔗
Activity 8.4.4. Complete the following calculation, noting :|0.6|<1: 🔗 ∑n=2∞2(0.6)n=(∑n=0∞2(0.6)n)−?−?=(?1−?)−?−? What does this simplify to?🔗 🔗 1.1 1.4 1.8 2.1 🔗
Observation 8.4.5. Given a series that appears to be mostly geometric such as🔗 3+(1.1)3+(1.1)4+⋯(1.1)n+⋯ we can always rewrite it as the sum of a standard geometric series with some finite modification, in this case:🔗 −0.31+∑n=0∞(1.1)n 🔗 Thus the original series converges if and only if ∑n=0∞(1.1)n converges.🔗 When the series diverges as in this example, then the reason why (|1.1|≥1) can be seen without any modification of the original series.🔗🔗
Activity 8.4.6. For each of the following modified geometric series, determine without rewriting if they converge or diverge.🔗 (a) .−7+(−37)2+(−37)3+⋯.🔗🔗(b) .−6+(54)3+(54)4+⋯.🔗🔗(c) .4+∑n=4∞(23)n.🔗🔗(d) .8−1+1−1+1−1+⋯.🔗🔗🔗
Activity 8.4.7. Find the value of each of the following convergent series.🔗 (a) .−1+∑n=1∞2⋅(12)n.🔗🔗(b) .−7+(−37)2+(−37)3+⋯.🔗🔗(c) .4+∑n=4∞(23)n.🔗🔗🔗